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Secondary Reflexions of Neutrons Diffracted by a Single-Crystal Bar Vibrating 
at High Frequency 
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Diffraction of neutrons by a longitudinally vibrating quartz single-crystal bar was investigated for 
thicknesses of 3 and 13 mm. The 1st, 3rd and 5th harmonic frequencies were excited in the bar. The 
observed increase of the integrated intensity of diffracted neutrons as a function of the vibration am- 
plitude of longitudinal vibrations of the quartz bar is compared with that calculated from an approx- 
imate theory considering the possibility of secondary reflexions of neutrons during their flight across 
the sample. 

1. Introduction 

The investigations of neutron diffraction by vibrating 
single crystals presented by Moyer & Parkinson (1967), 
Klein, Prager, Wagenfeld, Ellis & Sabine (1967), 
Chalupa, Michalec, Petr2ilka, Tich~ & Zelenka (1968) 
and Michalec, Chalupa, Petr2ilka, Galociov~i, Zelenka 
& Tich37 (1969) have shown a significant increase in the 
integrated intensity of neutrons diffracted as a function 
of the vibration amplitude of the single crystal. 

The theoretical explanation of some observed 
phenomena is given by Michalec, Sedl~ikov~i, 12ech & 
PetrNlka (1971), Buras, Giebultowicz. Minor & Rajca 
(1972), Buras & Giebultowicz (1972), Mikula, Michalec, 
Sedl~ikovg., Cech, Chalupa & Petr~ilka (1973) and 
Michalec, Chalupa, PetrLilka, Sedl~ikov~i, Cech & 
Mikula (1974). 

In diffraction experiments, neutrons with a wave- 
length of 2= 1 to 2 3, are conventionally used. These 
neutrons with velocities of 4 x l0 s to 2 x l0 s cm s -1 are 
also suitable for the investigation of dynamical effects 
associated with the displacement of crystallographic 
planes and its influence upon the process of neutron 
diffraction. 

As the frequency of longitudinal vibrations of the 
piezoelectrically excited quartz single-crystal bar of 
length 70 mm is f ~ 4 0 x  103 Hz, it is convenient to 
investigate the integrated intensity of neutrons dif- 
fracted for the vibration period r either much higher or 
comparable with the time At which the neutrons spend 
in a vibrating single crystal. This condition can be 
fulfilled by exciting the higher orders of the funda- 
mental frequency and by using different single-crystal 
bar thicknesses. 

2. Theoretical considerations 

Let us suppose a bar-shaped perfect single crystal, vi- 
brating longitudinally in the Y-axis direction. If we 

consider longitudinal vibrations only, then the oscilla- 
tion direction and propagation direction of vibrations 
both coincide with the direction of the Y axis. In such 
a case the displacement uyr of the plane (hkl) for the 
Kth harmonic frequency can be described by a func- 
tion in space and time 

Krc 
uyK =u0~ sin--T-y sin Koot (1) 

where Uor is the maximum amplitude for the Kth 
harmonic frequency, L is the length of the bar, y is the 
coordinate, f=oo/2n is the fundamental resonance 
frequency and K is the mode order (see Fig. 1). 

The deformation and the movement of the lattice 
plane in the direction of the Y axis with a velocity 
Vp(t), bring about the change ~0=0-08 of the Bragg 
angle 08 in the case of a symmetric transmission 
according to the equation 

uoKK~ [cos K~ ~o(t) = L - i f -  y sin Kcot 

C~ sin Kn ] + ~ ----ff-y cos Kcot tg 08 (2) 

which conforms with equation (2) of the paper of 
Michalec et al. (1971). [V, yl= 1I. sin 0n, Cy is the 
velocity of ultrasonic waves in the direction of the Y 
axis, and V, is the neutrons velocity. 

Let us suppose that a polychromatic neutron beam 
(see § 3) impinges on the lattice planes at the Bragg 
angle 08. During the time of flight At= T tg 0B/] V, yl of 
neutrons across the sample with the thickness T, the 
deformation gradient and the acceleration of the 
moving planes bring about the change @(t) (Michalec 
et al. 1974). 

~q~(t)=~ol(t)-~o2(t) 

uoKKrc [ Krc 
~0~(t)= L cos-~---Yl sin Kcot 
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Cy .sin Krc ] + ~ ---if- yt cosKcot tg 0B (3) 

uoKKg [ Kn 
(bz(t)= L COS ~-- -Y2 sin Kco(t + At) 

] Cy sin ---ff-Yz cos Kco(t+At) tg OB + 

where ya, t ( y z=y l -  T tg OB, t + At) are the coordinate 
and the time at which the neutrons enter the bar (leave 
the bar when the diffraction does not occur). 

After a simple calculation and omission of the 
subscripts, we find with a good approximation for 
y ~ L/2K, C,~2L =f, 

-6~o(t) - 2uoKKco tg 0B sin KcoT tg O~ 
[V, yl 21V,y[ 

K~z 
x s in--~-y sin Kco(t+At/2). (4) 

% 

~ne 
z (h~t) - -  

V , _  , 
/ \  I vpct,) 

, / / ! \  . - 

i I 

- i 

plane 
(hkt)  

Fig. 1. Schematic arrangement for neutron diffraction by a 
vibrating single-crystal bar with respect to the crystallo- 
graphic system of coordinates. 
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Fig.-2. Reciprocal-lattice construction of regular and secondary 
diffraction on two parallel planes of the same type, mov- 
ing with the velocities Vz,(h)= V~,(h). 

This relation holds if T tg OBey. 
NOW we can write that the integrated intensity of a 

diffracted beam P, as in the paper ofAntonini, Corchia, 
Nicotera & Rustichelli (1972) is proportional to n(t) of 
perfect 'crystalline layers' normal to the Y axis and 
given in our case of a vibrating single crystal bar by the 
expression 

n( t ) -  lO~o(t)l _ 4uorKco tg On 
2.66s zc[ V,,yl 2.66s 

where 

KcoT tg 0B Kzc 
× sin 2 , ¿  sin ~ - y  (5) 

2s=2Nc)~2F/rc sin 20n (6) 

is the angle interval of a total reflexion in a perfect 
non-vibrating single crystal. Arc is the number of 
elementary unit cells per unit volume. Other symbols 
of equation (6) have their usual meanings. 

Since 6~o(t) is a sinusoidal function of t, it is evident 
that throughout the time interval when n(t)~ 1 the 
consideration mentioned above is not valid. It is 
necessary to make this time interval much shorter than 
the vibration period z. This condition may be fulfilled 
by increasing the amplitude UoK. 

Hence, according to the equations (4), (5) and (6) 
the formula for the integrated intensity pv of a beam 
diffracted by a vibrating single-crystal bar becomes 

p v= P1 ~ v (7) 

where v=SoT is the irradiated crystal volume, So the 
area of the face of the irradiated volume element and 
P~ the integrated intensity of a beam diffracted by one 
'crystalline layer' with a unit area of the face. As can 
be seen from the equations (4) and (5), increasing 
the thickness T for a constant amplitude u0,c, we can 
find PLax when 

Kco Teff 
sin 2V, cos0n =1"  (8) 

This condition determines the effective thickness Teff 
for a given frequency. 

The thickness saturation phenomenon may be ex- 
plained by the presence of secondary reflexions, which 
mainly occur if 

Kco T 
< <z~ . (9) 

2 2V, cos OR 

The neutrons totally diffracted by the planes moving 
with a velocity Vp(h) at the instant fi can be again 
totally diffracted by the planes of the same type into 
the primary beam in the instant t2 when 

Vp(t2)=Vp(tl). (10) 

It is evident that throughout the time interval t 2 -  tx < 
At___ 7: the neutrons are passing through the bar. 

A C 30A - 7* 
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The plane velocity of a longitudinally vibrating single 
crystal bar is given by the expression 

V . ( t ) -  Ouyr Kz~ Ot - uorKco sin --L-- y cos Koat. (11) 

The condition (10) for the presence of secondary re- 
flexions can be expressed (y ~L/2K) in the form 

Kzc Kz~ 
sin - - L  yl cos K ~ t l -  sin L 

x [Yt+ V. sin On(t2-tO] cos Kcot2 (12) 

for t2 -q<v.  
Fig. 2 is a schematic diagram of a regular and of a 

secondary diffraction of neutrons by means of a recip- 
rocal-lattice construction at the sample point y~_ L/2K 
without considering the lattice deformation; 
¥.% 0~(V.~,0r) are the velocity and the angle of the 
incident (reflected) neutron in a regular diffraction; 
V'.~(VT) is the velocity of the incident (reflected) neu- 
tron in the course of the secondary diffraction; 
Vp(q) [V.(t=)] the plane velocity at the instant tl(tz) in 
the sample coordinate YI[Yl + V. sin Oa(tz- q)] and 
~hk~ the reciprocal-lattice vector. Other symbols marked 
by the subscript s correspond to the auxiliary recip- 
rocal-lattice construction for a non-vibrating crystal. 

V. ,V. The values of the angles 0~, 0r and the velocities ~ 
are calculated and confirmed by experimental results 
presented in paper of Mikula et al. (1973). 

3. Experimental results 

The measurements were carried out by means of the 
double-axis spectrometer (Michalec, Vavfin, Chalupa 
& VS.vra, 1967). A beam of nearly monoenergetic 
neutrons with wavelength 2 = 1.05 A, impinging on the 
investigated piezoelectrically vibrating quartz bar was 
diffracted by the plane (01.0) in the position of symme- 
tric Laue transmission and detected by a I°BF3 detec- 
tor. 

The half width of the rocking curve was the same for 
both the vibrating and non-vibrating crystal, namely 
12'. The high value of the mosaic spread of the mono- 
chromator relative to the perfection of the quartz 
single crystal enabled us to consider the neutron beam 
incident on the sample as a polychromatic one in the 
angle interval 0=0B+AO/2 (AO "~ 1'). The width of the 
incident beam was 5 mm. Moving the specimen in the Y 
direction by means of a cross table, the single-crystal 
bar was scanned when not vibrating as well as when 
vibrating at resonance frequencies f=38.948, 115.760 
and 198.300 kHz. Thus nodal lines and antinodes 
were determined. The dimensions of the bar-shaped 
quartz single crystal were: 3 mm in the X direction, 
70 mm in the Y direction and 13 mm in the Z direction 
(Fig. 1). 

Figs. 3 to 5 illustrate the dependence of the inte- 
grated intensity of neutrons diffracted by a vibrating 
single-crystal bar on the resonator current i, exciting 

the sample at the frequencies f=38-948 kHz (Fig. 3), 
f =  115.760 kHz (Fig. 4) and f =  198.300 kHz (Fig. 5) for 
two thicknesses Tx = 3 mm [curve (a)] and Tz = 13 mm 
[curve (b)]. The change of the thickness was made 
using simple rotation of the bar round the Y axis. All 
the effects were investigated in the antinodes ( y _  
L/2K). 

The vibration amplitude Uox was measured with a 
microscope for the fundamental frequency. A linear 
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Fig. 3. The integrated intensity pv as a function of high-fre- 
quency current i for the sample vibration at the fundamental 
frequency for two thicknesses T~,=3 mm [curve (a)] and 
Tz = 13 mm [curve (b)]. 
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Fig. 4. The integrated intensity pv as a function of high-fre- 
quency current i for the sample vibration at the third har- 
monic frequency for two thicknesses Tx= 3 mm [curve (a)] 
and T, = 13 mm [curve (b)]. 
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dependence of u0~ on high-frequency current i flowing 
through the bar was observed. A vibration amplitude 
Uo~ = 4 pm corresponds to the current i=  5 mA. The 
depehdence u0r on i for K = 3  and K = 5  was not 
verified because the amplitudes u0r were not meas- 
urabl~e by the optical device used. 

4. Discussion 

In the case of K= 1 equation (5) can be simplified for 
both thicknesses T=3 and 13 mm by means of the 
relation 

~ T t g  0B ,,~ coT tg On (13) 
2 sin 21V,,yl - I V . ~ l  

and can be written in the form 

n(t )= 2u°logZTtg2 08 zc 
r~V2y2.66 s sin - z - y  (14) 

which corresponds to the equation (5) of the paper of 
Michalec et al. (1974) where the calculated theoretical 
values of (pv/pj)~ are compared to experimental results 
of (pv/P~)e~p. Since n(t)/T is not a function of the bar 
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Fig. 5. The integrated intensity pv as a function of high-fre 
quency current i for the sample vibration at the fifth harmonic 
frequency for two thicknesses Tx=3 mm [curve (a)] and 
7",= 13 mm [curve (b)]. 
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Fig. 6. The ratio (P~/P~,)exp as a function of high-frequency 
current i for the sample vibration at the fifth harmonic 
frequency. 
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dimensions, it follows from equation (7) that the 
integrated intensity pv is roughly the same for both 
thicknesses. 

Fig. 3 shows a very good agreement of the experi- 
mental results with the theoretical considerations 
mentioned above for K =  1. The linear dependence pv 
on the excitation current i proves the relations (5) and 
(7) in the case of T = 3  (13) mm for i>  1 (0.3) mA, 
considering u01 as a linear function of i. 

As u0r becomes still larger, pv in equation (7) in- 
creases indefinitely. From the physical point of view, 
this is impossible, since there is an upper limit to the 
integrated intensity, which corresponds to the case of 
an 'ideally imperfect' crystal. For large u0r the curve 
is expected to level off. 

Another factor that should be considered is that for 
larger amplitudes u0K is no longer a linear function of 
the crystal current i. Therefore the deviation from 
linearity in the intensity dependence for K =  3 and 5 
may be due to either one or both of the two reasons 
mentioned above. 

The linear dependence pv of the vibrating single- 
crystal bar on the irradiated volume v is analogous to 
the results of kinematical theory of diffraction on a 
small perfect single crystal. Similarly as in Zachariasen 
(1967), the kinematical relation (7) for integrated 
intensity pv can be written in the form 

P~t. = PovA (lOQ'(uor, Og) (15) 

where Po is the incident intensity, A(/z) the transmis- 
sion factor with linear absorption coefficient /z and 
Q'(uoK, Co) the integrated reflectivity of the crystal 
unit volume. 

In the case of fundamental frequency (K= 1) 

Pin(t) P12u01o92 tg 2 On sin zc 
a'(u0t, co)= PoT =-eozVn~y2"-66s - ~ y .  (16) 

The transmission factor A(/z) can be considered to be 
unity for the quartz bar. 

The analysis of the great intensity differences illus- 
trated in Fig. 4 and 5 in cases of K =  3 and 5 requires 
the following relations 

2UoKK2092 tg 20B Kzc 
P~=P~v z~V2y2.66 ~ -  sin - ~ - y  (17) 

for 7'== 3 mm, 

4UoKKco tg 0B KogT= tg 0n • Kzc 
e~=elv ~IV,,I 2"66sTz sin 21V,,I sin ~ -  (18) 

for T== 13 mm. 

The presence of the term 

sin KogT= tg 0B 
21 r%,l 

in equation (18) enables us to estimate the magnitude 
of the secondary reflexions presuming that each of the 
n(t) 'crystalline layers' diffracts totally as in the Bragg 
case. 
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Theoretical values of (Pg/P:~)~ for K =  1, 3 and 5 are 
1.00, 0.76 and 0.41. The average experimental values of 
(P~/P~,),~p for K =  1 and 3 are 1-03 (for i>0.75 mA) 
and 0.61 (for 1 >0.25 mA). 

For K = 5  the comparison of the calculated value 
with the average experimental one is not possible, be- 
cause the experimental value of (P~/P~)~p depends on 
the high-frequency exciting current i, which de- 
pendence was not observed for K =  1 and 3. Thus in 
the case of K =  5 it is only possible to compare indi- 
vidual experimental quantities at low values of i. The 
increase of the ratio (P~/P~,)~p (for K =  5) versus i is 
shown in Fig. 6. The increase is brought about by rela- 
tively high acceleration of the moving planes, in which 
case the assumption that each of n(t) 'crystalline 
layers' diffracts totally is no longer justified. It is seen 
from Fig. 6 that for i ranging from 0 to 2 mA the 
change of (P[/P~,)~,p is _ 20 %. The authors realize that 
the theory presented in this paper is applicable only to 
qualitative estimation of neutron diffraction by vi- 
brating single crystals and to explanation of some 
phenomena observed. 

Similarly, in case of K =  3 and K =  5 it is possible to 
introduce a factor y;, analogous to the extinction factor 
Yext (Zachariasen, 1967) and to express the integrated 
intensity P~ in the form 

where 

P~=e~,~,y~ (19) 

sin KcoTz tg 0 B . . . . .  
, 2lv.,I 

Yk - (20) 
Ko9 T~ tg OB 

21V.~l 

On the basis of our experimental data and from our 
approximate theory we can make the following state- 
ment: For A(Iz)= 1, the integrated intensity difference 
between Bragg and Laue diffraction disappears when 
the displacement of the diffracting planes is accelerated 
in the direction of the reciprocal-lattice vector. 

The authors wish to thank Miss B. Ha~kov~i, Mr J. 
V~ivra and Mr P. Zeman for their valuable help 
throughout the measurements. 
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Crystal Structure Determination by Simultaneous use of Cosine Invariant Computation 
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An algorithm is given for the rapid computation of the cosine invariants, cos (~O--HI"I-~H2"JI'~H1-H2), 
and the results are compared with the actual values for three structures. A weighting scheme is derived 
which enables this information to be incorporated directly into the multisolution tangent method of 
phase determination. Details are given of the determination of four unknown structures by this method. 

Introduction 

Three different direct methods have been proposed for 
solving crystal structures. 

(1) Methods based on the zero value of the mean 
~in¢ inv~ri~nt ~r~ all deriv¢d from u~¢ of the ~ 

formula (Karle & Hauptman, 1953) and the tangent 
formula (Karle & Hauptman, 1958): 

A/_/I,//2 sin (~0H2 + tpHl_n2) 
H2 

tg ~,.~= ~ A.~,,,2 cos (~.~+q,,,~_.~, 

/ 


